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The phase diagram of the one-state Potts model on the closed asymmetric 
Cayley tree with branching ratio r = 2 is obtained from the Bethe-Peierls map. 
The route to chaos, via the period doubling cascade, is obtained by considering 
the antiferromagnetic coupling limit. The connection of the Ports model with 
the percolation problem is shown by calculating the order parameter, its suscep- 
tibility, the internal energy, and the specific heat as well as their asymptotic 
behavior at the paramagnetic-ferromagnetic critical point. Due to the type of 
the lattice and to the polynomial character of the map, this is the simplest 
known example of a McKay Berker-Kirkpatrick spin-glass. 

KEY WORDS:  Bethe-Peierls map; M6bius transformation; logistic map; 
mean-field percolation; McKay Berker-Kirkpatrick spin-glass. 

In this paper  we study the one-state ( p =  1) Potts  model  on the closed 
asymmetr ic  Cayley tree. It is shown that  for a general p the renormaliza-  
t ion group t ransformat ion  (Bethe-Peierls  map)  is a ra t ional  recursion rela- 

t ionship relating the effective magnet ic  field in two consecutive generations.  
For  the one-state model  the Bethe-Peier ls  map reduces to a po lynomia l  

whose degree is equal  to the b ranch ing  rat io r. For  even r the map is 
unimodal ,  displaying a route to chaos via bifurcation, (1) while for odd r, as 

well as in the limit r ~ o% one has a homeomorph i sm which can have no 
periodic point  with period greater than  two. (2) The par t icular  case of r - -  2, 

the only one which can be treated analytically, is studied in detail. 
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The study of exactly soluble frustrated spin systems defined on 
hierarchical lattices as prototypes of spin-glasses was initiated in 1982 by 
McKay etal.  (MBK) (3) and extended further by Derrida etal.  (4) who 
presented a detailed study of the analytic behavior of the free energy. MBK 
analyzed an Ising model with nonrandom competitive interactions whose 
one-dimensional recursive relation for the renormalized bond strength has 
five parameters, all of them related with the geometric features of a quite 
uncommon and artificial lattice. Fixing four chosen parameters, they dis- 
cussed the renormalization group orbits as a function of the remaining one, 
which measures the frustration present in the system. As this parameter is 
varied, increasing the frustration, the usual period doubling route to chaos 
appears, and they interpreted the chaotic regime as a spin-glass phase of 
the system. 

The presence of chaos in another Ising system also with nonrandom 
competitive interactions but defined on the familiar Cayley tree has been 
investigated by Yokoi e taL (5) However, their model generates a two- 
dimensional mapping. In contrast to these models, our system has no com- 
petitive interactions and its one-dimensional map is parametrized by the 
temperature T, by the external field HI,  by the branching ratio r, and by 
the number of states p, which measures the amount of frustration present. 
Therefore, considering the familiarity with the lattice, and the nature of the 
parameters, in particular, the special role played by p as the frustration 
knob, our system forms a new type and it is the simplest example of an 
MBK spin-glass. 

The nearest-neighbor p-state Potts model on the Cayley tree is known 
to have a trivial (open chain) partition function unless an external 
magnetic field is turned o n .  (6'7) In the presence of a weak magnetic field the 
model exhibits, as a consequence of the surface effects, a phase transition 
of continuous order. This transition is characterized by a field term in the 
free energy whose exponent varies continuously with the temperature. (8'9) 
On the other hand, subtracting the surface effects, we can study the local 
properties deep inside the tree which reproduce the results of the mean field 
(Bethe-Peierls) approximation. (1~ In this case the model displays a phase 
transition of first or second order, depending on p.(11) A comprehensive 
treatment of both global and local thermodynamic properties can be 
obtained by the introduction of an additional (ghost) spin (12-15) which 
interacts with all spins in the interior and on the surface of the Cayley tree. 
In this paper we shall deal only with mean field (local) results. We notice 
that even though it is now over 30 years since the Potts model was first 
proposed, its mean field approximation has not yet been fully developed to 
the same extent as that of the Ising model. To the best of our knowledge, 
this is the first study of the one-state model on the Cayley tree. This system 
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has a very rich thermodynamic behavior and the complete understanding 
of its features may increase our knowledge of polynomial maps. For exam- 
ple, from the fact that the critical exponents are independent of the polyno- 
mial degree one can infer the existence of some universal geometric features 
in the Mandelbrot and Julia sets. Further interest in this system stems from 
the known result that the statistics of a percolating cluster on a lattice is 
described by the one-state Potts model/~6) The procedure followed is to 
obtain first the results for a general p and then to take the limit p ~ 1. As 
shown later, in this limit one recovers directly the mean field results of the 
percolation problem. 

Using the Mittag-Stephen (~7) representation for the Potts variable, we 
write the Hamiltonian defining the system as 

p - - I  p 1 

i-i= -pJ 2 Z q-  #-11Z 2 (1) 
( 6 >  q = 0  i q = 0  

where the summation is over all pairs (i, j )  of nearest neighbor sites, the 
second sum is over all sites i in the tree, and 2g is the ghost spin. Freezing 
this spin in any one of its p-states, one recovers the Hamiltonian for the 
system on the open tree in the presence of the external magnetic field H 1. 
The edges representing the interactions of the ghost with the other spins 
change drastically the most relevant topological features of the open 
loopless lattice by transforming it into the closed asymmetric Cayley tree 
(c.a.t.); see Fig. 1. 

The correlation function (2q2f q) is given by 

~2q)~ p -q )  = (1 - e  P~Ju)/[1 + ( p -  1) e -p~Jo] (2) 
t y 

where ( . )  stands for the usual Gibbs average. The rhs of Eq. (2) is the 
thermal transmissivity ~18) t(Ju) between the (external) spins at sites i and j. 
The thermal transmissivity t(J) is the most natural variable because of its 
simple composition rule. For instance, if three spin variables at sities i, j, 
and k are connected in series by the coupling constants J~ and Jjk, the 
equivalent transmissivity t(Jeq ) between the external spins is the product 
t(Jo. ) t(Jjk ). On the other hand, if two spins at sites i and j are coupled in 
parallel by the coupling Jij and Ko., the equivalent (dual) transmissivity 
td(Jeq) is the product td(Jo) td(Ku), where 

td(J~) = exp -PflJij (3) 

Applying now the composition rules to the transmissivities in the 
elementary generating cluster (Fig. 1) of the tree, one obtains the equiva- 
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Fig. 1. A closed asymmetric Cayley branch ratio r= 2 with two generations. The branch 
with one more generation is obtained by replacing each dashed edge by the elementary cluster 
(cut diamond) which is formed by two solid edges representing the coupling J, two dashed 
edges representing the renormalized magnetic field HN, and by the dot-dashed edge (bare 
magnetic field) connecting the ghost spin with the top spin in the diamond. The BP map given 
by Eq. (4) is obtained by calculating the effective interaction between the top and ghost spins 
in the cut diamond. The c.a.t, is formed by connecting the top sites of three branches to an 
extra (central) site. 

lent transmissivity X.  +1 between the ghost  and any spin in the n + 1 shell 
as a recursion relationship, the so-called Bethe-Peierls (BP) map:  

Xn+ 1 = B(X.: t, h~, 2) 

h 1 + 2 [ 1  + ( p - 2 )  h~] tX,+ [(p-2)+(pR-3p+3)h~] t2X~ 
= (4) l+2(p-1)hl tX ,+(p-1)[ l+(p-2)h ,] t  X n2  2 

The transmissivities hi and X, are obtained from Eq. (2), substituting, 
respectively, J~ by the external (bare) magnetic field H1 and by the renor- 
malized field H ,  acting upon  the spins in the nth shell. 

In  the limit p ~ 1 the BP map reduces to a polynomial  of  degree two 
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which can be conjugated to the Mande lbro t  map M ( X ) =  X 2 - ~  - C via a 
M6bius  t ransformation,  (t9) 

m ( x )  = L o B o L -  I(X), 

where 

L(X)=aX+b (5) 

a = - ( 1 - h ~ ) t  2, b = ( 1 - h  I t 

C=t(1 --t)(i -hi)  

(6) 

(7) 

the knowledge of Equat ion  (7) allow us to draw the phase diagram, since 
the critical values C2s of the parameter  where the orbits of the M map 
become indifferent gives the equat ions of the transit ion lines. Let us con- 
sider first the values of C outside (the real part  of) the Mandelbro t  set, i.e., 
C r  ( - 2 ,  1/4). In this case all points in the Xplane ,  except those on the 
Julia set, are at tracted to infinity, which is the only (super) stable a t t ractor  
of the map,  yielding a thermodynamical ly  ill-defined system. In the h l- t  

parameter  space this will correspond to the regions 11/4, I 2 (Fig. 2). In the 

"iX -. 

i\ \ 
T-z ~ ~..I l 

I /2 

t 

Fig. 2. In the regions 11/4 and 1 2 the system is thermodynamically ill defined. Their 
boundaries (dot-dashed lines) are obtained by setting C= 1/4, C = - 2  in Eq. (7). In the 
region denoted by F the stable fixed point is X*+. The paramagnetic fixed point X*_ =0 is 
stable in the region hi =0, te (-1/2, 1/2). In the first band (from right to left) the system is 
in a period-2 cycle. The intermediary strip represents the succession of period-2 s cycle bands 
generated by the period doubling cascade. The last band at the right end is the (chaotic) spin- 
glass band. 
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interval - 3 / 4 <  C <  1/4 the M map has a stable fixed point which is 
associated by the M6bius transformation to the fixed points 

1 
X* - 2 t 2 ( l _ h , )  

{2 t (1 -h l ) - l+_[ l+4 t ( t - l ) (1 -h l ) ]  ~/2} (8) 

of the BP map. In the h~ t space, X* is stable in the region denoted by F, 
which excludes the straight line segment h~ =0,  t E ( -1 /2 ,  1/2), where the 
paramagnetic fixed point X*_ = 0 is the stable one. Looking back to the 
tree, this corresponds to the case when the correlation function between the 
ghost and the spins infinitely far from the surface does not change when 
one moves inward the interior of the tree. On the other hand, for 
- 5/4 < C < - 3 / 4  the M map has a stable period-2 cycle. 

This will give rise to the first band (from right to left) in the h~-t 
plane. Its boundaries are obtained from Eq. (7) by setting C equal to - 3 / 4  
and -5 /4 ,  respectively. In the tree the correlation between the ghost and 
the spins belonging to two consecutive generations will alternate, taking 
the values given by the cycle. Lowering further, but keeping the value of C 
inside the Mandelbrot set, one obtains the usual period doubling route to 
chaos. Taking C in the interval (C2, , C2,+1), where the period-2 * cycle is 
stable, will give rise to the period-2 * band in the BP parameter space. The 
onset of the chaotic behavior of the M map occurs for C = Cch -- --1.42... 
and according to the conjugation given above the chaotic band boundaries 
are obtained by setting C =  Cch and C = - 2 .  Except for the periodic 
windows inside the chaotic band, the correlation functions between the 
ghost and the spins deep inside the tree are random. The microscopic inter- 
pretation given by MBK to the chaotic regime can be easily extended by 
noting that the subset of noncontiguous spins which are strongly correlated 
with each other now form rings in the tree like those in a sequoia tree. 

Let us show how the correspondence between the bond percolation 
problem and the one-state Potts model pointed out by Kasteleyn and 
Fortuin can be verified explicitly in this case. Let us construct first the 
thermal transmissivity m between the ghost and the central spin of the 
Cayley tree in the region of the h~-t plane where X* are stable: 

m=Xn+x + tX,(1 --Xn+ X) (9) 

In the (thermodynamic) limit of n ~ oo we can replace the X'~ by the fixed 
points X* so that at zero field the order parameter expression reduces to 

m= {Ol'_ [ ( l_  t)/t] 3, 
Itl < 1/2 (lO) 
1/2< t <  1 
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We observe now that if we equate t with the probability ~ of a bond being 
present, therefore restricting our results to the region of t/> 0, the above 
expression for rn is identical to the ratio of the percolation probability P(rc) 
by G(2o) i.e., 

m(t, O) =- P(~r)/~z (11) 

The order parameter susceptibility at h l = 0 is given by 

(1 + t)/(1 - 2  0, t <  1/2 

fl ~X= ( 1 - t ) 2 [ t ( l + t ) - 2 ( 2 t - 1 ) ] / [ t 3 ( 2 t - 1 ) ] ,  t > l / 2  
(12) 

We remark that the high-temperature ( t <  1/2) expression for fi 1)~ 
coincides with the ratio of the mean finite cluster size S(=) by =.(2o) From 
Eqs. (9), (10), and (12) we get that /3 = 1, 7 = 7' = 1, 8 = 2, which are the 
mean field critical exponents of the bond percolation problem. (21) We now 
turn our attention to the internal energy (per number of pairs), which is 
obtained by calculating the thermal transmissivity between the central spin 
and a top spin (22) and zero-field specific heat, 

u =  - J [ t  + (1 - t) x , , x . +  ,] (13) 

C/kB ~(/~y)2 (1 -- t), t < 1/2 
=[ ( f l J ) Z ( 1 - t ) [ ( 2 t - 1 ) ( 2 t 2 - y t +4) + t s ] / t  5, t > l / 2  (14) 

The expansion around tL. = 1/2 yields a linear cusp behavior for C/kB, s o  

that c~ = e' = - 1, which are the mean-field percolation critical exponents.(21) 
In conclusion, we have presented the mean field phase diagram of the 

p = 1 Potts model on the c.a.t. A M6bius transformation allow us to con- 
jugate the BP map with the quadratic map, yielding a relationship between 
the t and hi which determines the phase diagram of the model. Stressing 
the fact that the main result is the Bethe-Peierls map and all other results 
follow directly from it, we show that the model has a sound physical con- 
tent by establishing its connections with the percolation problem. This is 
accomplished by calculating the p = 1 thermodynamic properties in the 
phases determined by X*  and in the critical region. The identification of 
t(J) with the bond probability is sufficient to recover the percolation func- 
tions and its critical exponents. Therefore, the procedure used automati- 
cally satisfies the requirements of the Kasteleyn-Fortuin theorem. We also 
observe that the percolation results can be analytically continued to the 
whole region right of the critical line - 3 / 4  = t ( 1 -  t ) ( 1 -  hi). 

822/58/5-6-29 
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